

ROSEVILLE COLLEGE

MATHEMATICS EXTENSION 1

TRIAL EXAMINATION 2004

Time allowed: 2 hours + 5 minutes reading time

Directions

- Attempt ALL questions.
- Show all necessary working, marks may be deducted for careless or untidy work.
- Board-approved calculators may be used.
 - Additional Answer Pages are available.
- A table of standard integrals is provided

QUESTION 1 (Start a new page)

MARKS

(a) Evaluate $\lim_{x\to 0} \frac{\sin 4x}{5x}$.

1

(b) Evaluate $\int_{0}^{\sqrt{2}} \frac{dx}{x^2 + 2} .$

3

(c) If $P(x) = x^4 - 3x^3 + ax^2 - 12$ is divisible by (x-3), find the value of a.

2

(d) Use the table of standard integrals to evaluate $\int_{3}^{5} \frac{dx}{\sqrt{x^2 - 4}}$.

2

(e) Show that $\tan^{-1} x = \cos^{-1} \frac{1}{\sqrt{1+x^2}}$

(f) Seven people want to sit around a circular table. Two of them want to sit together. 2 In how many ways can the table be arranged?

QUESTION 2 (Start a new page)

MARKS

- (a) How many 7 letter words can be made from the word ADDIDAS?
- 2

(b) Find the coefficient of x^{12} in the expansion of $\left(\frac{1}{x^2} + x^3\right)^{14}$.

are constants, A > 0 and α is in radians.

2

3

 $\checkmark \quad \text{(c)} \quad \text{Find } \frac{d}{dx} (\frac{\tan^2 x}{x}).$

(d)

- 2
- (ii) Hence solve the equation $\cos \theta \sqrt{3} \sin \theta = \sqrt{3}$ for $-\pi \le \theta \le \pi$.

(i) Express $\cos \theta - \sqrt{3} \sin \theta$ in the form A $\cos (\theta + \alpha)$ where A and α

3

(a) A circle is expanding so that the rate of increase in its radius is 0.75 cms⁻¹.

Find the rate of increase in its area when

- (i) the radius is 10cm
 2
 (ii) the circumference is 10cm.
- (b) Solve $3^{2x} = 5$.
- (c) The equation $2x^3 + 2x^2 + 4x + 1 = 0$ has roots α, β, γ . Find the value of

$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$$

(d) In the figure, AOB is the diameter of a circle centre O. D is a point on chord AC such that DA = DO and OD is produced to E. AF is the bisector of $\angle BAC$ and cuts BE in G. Prove that GA = GB

QUESTION 4 (Start a new page)

MARKS

- (a) Use mathematical induction to prove that, for all positive integers n, $\sum_{r=1}^{n} \frac{r^2}{(2r-1)(2r+1)} = \frac{n(n+1)}{2(2n+1)}$
- (b) (i) Prove the identity $\frac{\sin 2\theta}{2\sin \theta} \cos \theta \cos 2\theta = 2\cos \theta \sin^2 \theta$
 - (ii) Hence solve the equation $\frac{\sin 2\theta}{2\sin \theta} \cos \theta \cos 2\theta = \cos \theta \text{ for } 0 \le \theta \le 2\pi.$
- (c) Consider the function $f(x) = \cos^{-1}(x-1)$
 - (i) Find the domain of the function.
 - (ii) Sketch the graph of the curve y = f(x) showing clearly the coordinates of the endpoints 2

- (a) Corn cobs are cooked by immersing them in boiling water. On being removed, a corn cob cools in the air according to the equation $\frac{dT}{dt} = -k(T - T_0)$ where t is time in minutes, T is temperature in °C and T_O is the temperature of the air, while k is a positive constant.
 - (i) Verify that $T = T_O + Ae^{-kt}$ is a solution of the above equation where A is a constant.
- 2
- (ii) If the temperature of the boiling water is 100°C and that of the air is a constant 25°C, find the values of A and k if a corn cob cools to 70°C in 3 minutes.

2

- (iii) How long should a person wait to enjoy the food at a temperature of 50°C?
- 2
- (b) A girl of height 2 metres throws a ball from M to the roof of a 15 metre high building. She throws the ball at an initial velocity of 25m/s, and she is 20m from the base of the building.

(i) Derive the equations of motion of the ball

(Assume
$$\ddot{x} = 0$$
 and $\ddot{y} = -10$)

- 3
- (ii) Between which two angles of projection must she throw the ball to ensure that it lands on the roof of the building?

QUESTION 6 (Start a new page)

MARKS

- (a) Let $f(x) = \tan^{-1} \left(\frac{2}{x}\right) \tan^{-1} \left(-2x\right)$ where x > 0. Find f'(x).
- (b) A particle is moving in a straight line. At time t seconds, it has displacement x metres from a fixed point O on the line, velocity v ms⁻¹ and acceleration a ms⁻². The particle starts from O and you are given that $v = (2 x)^2$.
 - (i) Find an expression for a in terms of x

2

3

(ii) Find an expression for x in terms of t

- 3
- (iii) Find the distance from O when the particle has a speed of 1ms⁻¹.
- 2

2

(c) At a football club a team of 13 players is to be chosen from a pool of 32 players consisting of 20 Australian-born players and 12 players born elsewhere. What is the probability that the team will consist of all Australian-born players?

QUESTION 7 (Start a new page)

MARKS

(a) (i) Express cos 2A in terms of sin²A

1

(ii) Hence find the exact value of $\int_{0}^{\pi} \sin^{2} \frac{x}{4} dx$

2

(b) A particle moves along a straight line such that its displacement x m from an origin 0 at time t seconds is given by

$$x = 4\sin\frac{\pi}{2}t$$

(i) Show that this is Simple Harmonic Motion

2

(ii) State the amplitude and period of this motion

1

(iii) Calculate the maximum speed attained by this particle

1

- (c) Suppose that $(5+2x)^{12} = \sum_{k=1}^{12} a_k x^k$
 - (i) Use the binomial theorem to write an expression for a_k

2

(iii) Show that $\frac{a_{k+1}}{a_k} = \frac{24 - 2k}{5k + 5}$

3

End of paper

Suggested Solutions Question(1) a) lim Sm4x $\frac{ux}{x^2+2} = \left[\frac{1}{\sqrt{2}} + an^{-1} \frac{x}{\sqrt{2}}\right]_{n}^{2}$ = 1/5 [ton 1 - tan 0] (c) $P(x) = x^{4} - 3x^{3} + \alpha x^{2} - 12$ P(3) = 00 = 81-81+90-12 (d) (d)c $= \left\{ \ln (x + \sqrt{x^2 - 4}) \right\}_{3}^{3}$ (1) = In (5+\ai) - In(3+\s) = In 5+a1 - 1 (e) tan 'x = cos' 1+x2 let 0 = tan-1x) 11+ X2 χ : tane = x : coso = 1 :- ton'x = cos'_ (f) As if 6 in a x circle : No woys to sit together = 5! x2 0 240

Guestion(2)

(a)
$$\frac{7!}{3! \times 2!}$$
 (b)

= 420

(b) $\left(\frac{1}{\chi^2} + \chi^3\right)^{14}$

want k such that

 $\left(\frac{1}{\chi^2}\right)^{14-k} \left(\chi^3\right)^k = \chi^{-10}$

i.e. $3k - 2(14-k) = 12$ similar

 $3k - 28 + 2k = 12$

(c) $\frac{1}{\chi^2} + \frac{1}{\chi^2} + \frac{1}{\chi^2}$

Exti

TRIAL 2004

```
Question (3)
                                                  A = \pi r^2
(a) dr = 0.75
                                                 OLA = 2TTY
  (i) \frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dt}
                  = 2πr × 0.75 × 0.
for r=10 = 2×110×0.75)
                   = 15πcm²/s
   (ii) dA = dA x dr dt
          0 \Rightarrow | \Gamma = A^{1/2}
= 2\sqrt{A\pi} \times 0.75 | \Gamma = A^{1/2}
          = 2\sqrt{A\pi} \times 0.75 | \Gamma = \frac{A}{\sqrt{\pi}} | \frac{Question(4)}{2}
\frac{dr}{dA} = 2\sqrt{10} \times 0.75 | \frac{dr}{dA} = \frac{1}{2\sqrt{A\pi}} | \frac{1}{(2r-1)(2r+1)} = \frac{n(n+1)}{2(2n+1)}
\frac{dA}{dA} = 2\sqrt{10} \times 0.75 | \frac{dA}{dA} = 2\sqrt{A\pi} | \frac{1}{(2r-1)(2r+1)} = \frac{n(n+1)}{2(2n+1)}
  when A = 10
           3^{2x} = 5
(b)
          \ln 3^{2x} = \ln 5
2x \ln 3 = \ln 5
                     2x = \frac{\ln 5}{\ln 3}
                           x = \frac{1}{2} \frac{\ln 5}{\ln 3}
                            x = 0.73248676
(c) 2x^3 + 2x^2 + 4x + 1 = 0
          \frac{1}{\lambda} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\beta \delta + \lambda \delta + \lambda \beta}{\lambda \beta \delta \lambda}
                                  = (2) \div -\frac{1}{2} \cdot 0. 
 = -4 
(d)
```

letLOAF = X=LCAD (given) : DADO is isosceles (AD=00) : LAOD = LOAD = 2x (equal ('s of isos a) :. LABE = x (angleat centre In DAGB is double Lateire) :. LGAB = LABG (bothx) .' A ACB is isosceles .. GA=GB(equal sides ofisos. Δ) = 1.5 \(\overline{10} \) \(\overline{1} \) \(\o Step 1) Prove for n=1 when : LHS = RHS True for n=1 Step (2) Assume true for n=k (2K-1)(2K+1) 2(2K+1 Step 3 Prove for n=k+1 To Prove (2k-1)(2k+1) (2k+1)(2k+3) = (K+1) (K+2) 2(2k+3)LHS = $\frac{(k+1)^2}{2(2k+1)} + \frac{(k+1)^2}{(2k+1)(2k+3)}$ $=\frac{K(k+1)(2k+3)+(k+1)^{2}.2}{2(2k+1)(2k+3)}$ =(k+1)(k(2k+3)+2(k+1))2(2k+1)(2k+3)

$$= \frac{(k+1)(2k^2+3k+2k+2)}{2(2k+1)(2k+3)}$$

$$= \frac{(k+1)(2k+5k+2)}{2(2k+1)(2k+3)}$$

$$= \frac{(k+1)(2k+1)(k+2)}{2(2k+1)(2k+3)}$$

$$= \frac{(k+1)(k+2)}{2(2k+3)}$$

$$= \frac{(k+1)(2k+1)(2k+3)}{2(2k+3)}$$

$$= \frac{(k+1)(2k+1)}{2(2k+3)}$$

$$= \frac{(k+1)(2k+1)(2k+3)}{2(2k+3)}$$

$$= \frac{(k+1)(2k+1)(2k+3)}{2(2k+3)}$$

$$= \frac{(k+1)(2k+1)(2k+3)}{2(2k+3)}$$

$$= \frac{(k+1)(2k+1)}{2(2k+3)}$$

$$= \frac{(k+1)(2k+1)}{2(2k+1)}$$

$$= \frac{(k+1)(2k+1)}{$$

(b) (i)
$$\dot{x} = 0$$
 $\dot{x} = 25\cos x$
 $\dot{x} = 25\cos x$
 $\dot{y} = -10$
 \dot{y}

$$\frac{(3) + (3) + (3)}{(a) + (2) + (2)} + (2)$$

$$f'(x) = + (2) + (2)$$

$$f'(x) = -2x^{-2} + 2$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$1 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 + (2) + (2)$$

$$2 +$$

(c)
$$32 \text{ Players}$$
 $20 \text{ Australian} \quad 120 \text{ thers}$
 $P(\text{au Aust}) = {}^{20}C_{13} - 0$
 $C_{13} = 0.00022316$

Question (7).
(a) (1)
$$\cos 2A = 1 - 2\sin^2 A$$
 (1)

$$(ii) \int_{0}^{\pi} sm^{2} \frac{x}{4} dx$$

$$= \left(\frac{1}{2} - \frac{1}{2} cos \frac{x}{2} dx\right)$$

$$= \left(\frac{x}{2} - 1 \cdot sin \frac{x}{2}\right)_{0}^{\pi}$$

$$= \frac{\pi}{2} - 1 - 0$$

(1)

 $=\frac{\pi}{2}-1$

(i)
$$x = 4 \text{ Sm} \frac{\pi}{a}t$$
 $x = 2\pi \cos \pi t$
 $x = -\pi^2 \text{ Sm} \frac{\pi}{a}t$
 $x = -\pi^2 x$

in form $x = -n^2 x$

Which is SHM. $n = \frac{\pi}{2}$

(ii) Amplitude = 4

Period. =
$$\frac{2\pi}{2}$$

($\frac{\pi}{2}$) ($\frac{1}{2}$ each)

= 4

$$\frac{32}{C_{13}}$$
 — (iii) max speed. when $\cos \pi t = 1$
 $\frac{1}{x} = 2\pi \cos \pi t$

$$\chi = 2\pi m/s$$
. (1)
 max 12
(c) $(5+2x)^{12} = \sum_{k=1}^{12} a_k x^k$

$$Q_{K} = \frac{12}{C_{K}} \sum_{i=1}^{12-K} \sum_{k=1}^{K} Q_{i}$$
(ii) $Q_{K+1} = \frac{12}{C_{K+1}} \sum_{k=1}^{12-K} Q_{i}$

$$\frac{12C_{k+1}}{a_{k}} = \frac{12C_{k+1}}{5} \cdot \frac{1}{2}C_{k}$$

$$= \frac{[12!]}{(\kappa+1)!(12-\kappa-1)!}$$

$$= \frac{[12!]}{[\kappa!(12-\kappa)!]}$$
5

$$= \frac{12! 2}{(k+1)!(12-k-1)!} \times \frac{k!(12-k)!}{12! 5}$$

$$= \frac{2(12-K)}{5(K+1)}.$$

$$= \frac{24-2K}{5K+5}$$

as required.