Student Number: ..o,

ROSEVILLE COLLEGE

MATHEMATICS EXTENSION 1

TRIAL EXAMINATION 2004

Time allowed: 2 hours + 5 minutes reading time

Directions

Attempt ALL questions.

Show all necessary working, marks may be deducted for careless or untidy
work.

Board-approved calculators may be used.

Additional Answer Pages are available.

A table of standard integrals is provided




QUESTION 1 (Start a new page) MARKS
(a) Evaluate lim>> Rl . 1
-0 Sy
V2
(b) Evaluate j de . 3
0 X +2
(c) If P(x) = x* — 3x* + ax” — 12 is divisible by (x —3), find the value of a. 2
v dx
(@ Use the table of standard integrals to evaluate . 2
'! vx’ -4
(e) Show that tan™'x = cos™ ! 2
1+x?
® Seven people want to sit around a circular table. Two of them want to sit together. 2
In how many ways can the table be arranged?
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QUESTION 2  (Start a new page) MARKS
(a) How many 7 letter words can be made from the word ADDIDAS? 2
1 14
(b)  Find the coefficient of x* in the expansion of (—2 +x° ) ) 3
x

. .. d tan’x
\/®) Find -~ ( . ). 2

(d) (1) Express cos0 — J3sin0 inthe form A cos (0 + o) where A and
are constants, A > 0 and « is in radians. 2

(i1) Hence solve the equation cos® — V3sin® = 3 for —n<O<m 3
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QUESTION 3  (Start a new page) MARKS

(a) A circle is expanding so that the rate of increase in its radius is 0.75 cms’”.

Find the rate of increase in its area when

@) the radius is 10cm 2
(i)  the circumference is 10cm. 2
(b) Solve 3** =5. 2

() The equation 2x° +2x*+4x+ 1 = 0 has roots a,p, y. Find the value of

(d) Inthe figure, AOB is the diameter of
a circle centre O. D is a point on
chord AC such that DA = DO and OD
is produced to E. AF is the bisector of
/BAC and cuts BE in G.

Prove that GA = GB
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QUESTION 4 (Start a new page)

(a) Use mathematical induction to prove that, for all positive integers n,

- r’ _ n(n+l)
Z,: Qr-DQ2r+1) 2(2n+1)

(b) (1) Prove the identity
sin 26

2sind

—c0scos26 =2cosfsin’ 0

(i1)  Hence solve the equation

sin 268
2sind@

(c) Consider the function f(x)=cos" (x—1)

(1) Find the domain of the function.

—cosf@cos20 =cos@ for 0<G < 2.

MARKS

(1) Sketch the graph of the curve y = f(x) showing clearly the coordinates

of the endpoints
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QUESTION 5 (Start a new page) MARKS

(a) Comn cobs are cooked by immersing them in boiling water. On being
removed, a corn cob cools in the air according to the equation

dT e X .
’ = k(T — To) where t is time in minutes, 7 is temperature in °C and
t

To is the temperature of the.air, while £ is a positive constant.

(i) Verify that T=Tp + Ae ™ is a solution of the above equation 2
where A is a constant.

(ii) If the temperature of the boiling water is 100°C and that of the air 2
is a constant 25°C, find the values of 4 and & if a corn cob cools
to 70°C in 3 minutes.

(iii) How long should a person wait to enjoy the food at a temperature 2
of 50°C?

(b) A girl of height 2 metres throws a ball from M to the roof of a 15 metre
high building. She throws the ball at an initial velocity of 25m/s,and she is
20m from the base of the building.

N -
—

15m
Ml 2m L
0 20m
(i) Derive the equations of motion of the ball 3

(Assume x =0and y = -10)

(ii) Between which two angles of projection must she throw the ball to ensure that
it lands on the roof of the building? 3
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QUESTION 6 (Start a new page) MARKS

(a) Let f(x)=tan" (g) —tan™' (— 2x) where x> 0.
x

Find f'(x). 3

(b) A particle is moving in a straight line. At time ¢ seconds it has displacement
X metres from a fixed point O on the line, velocity v ms’ I"and acceleration
a ms™. The particle starts from O and you are given that v= (2 — x)*

(i) Find an expression for a in terms of x 2
(ii) Find an expression for x in terms of ¢ 3
(iii) Find the distance from O when the particle has a speed of Ims™. 2
(c) Ata football club a team of 13 players is to be chosen from a pool of 2

32 players consisting of 20 Australian-born players and 12 players
born elsewhere. What is the probability that the team will consist of
all Australian-born players?
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QUESTION 7 (Start a new page) MARKS
(a) (i) Express cos 2A in terms of sin’A 1
(i1) Hence find the exact value of J.sin2 g- dx 2

0

(b) A particle moves along a straight line such that its displacement x m from
an origin 0 at time ¢ seconds is given by

x=4sin ~
2
) Show that this is Simple Harmonic Motion 2
(i)  State the amplitude and period of this motion 1
(ii1)  Calculate the maximum speed attained by this particle 1
12
(c) Supposethat (5+2x)"? = Za,,x"
k=1
(1)  Use the binomial theorem to write an expression for ay 2
a —
(i)  Show that L = 24-2k 3
a, Sk+5
End of paper
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